Acids

- 1. Which equation does **not** represent a neutralisation reaction?
 - $\textbf{A} \quad Zn + 2HCI \rightarrow ZnCI_2 + H_2$
 - $\textbf{B} \quad 2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$

 - $\textbf{D} \quad CuO + 2HNO_3 \rightarrow Cu(NO_3)2 + H_2O$

Your answer	Your	answer	
-------------	------	--------	--

[1]

2. The burette readings from a titration are shown below.

Final reading / cm ³	24.95
Initial reading / cm ³	5.00

The burette used has an uncertainty of ± 0.05 cm³ in each reading. What is the percentage uncertainty of the resulting titre?

- **A** 0.20%
- **B** 0.25%
- **C** 0.45%
- **D** 0.50%

Your answer	

[1]

- 3. Which equation is **not** a neutralisation reaction?
 - $\label{eq:action} \textbf{A} \qquad \quad Ca(s) + 2HC\textit{I}(aq) \rightarrow CaC\textit{I}_2(aq) + H_2(g)$
 - $\textbf{B} \qquad \quad H^{\scriptscriptstyle +}(aq) + OH^{\scriptscriptstyle -}(aq) \to H_2O(I)$
 - $\label{eq:constraint} \textbf{C} \qquad \qquad \textbf{K}_2 \text{CO}_3(s) + 2 \text{HNO}_3(\text{aq}) \rightarrow 2 \text{KNO}_3(\text{aq}) + \text{H}_2 \text{O}(\text{I}) + \text{CO}_2(\text{g})$
 - $\label{eq:def_def_def} \textbf{D} \qquad \qquad \mathsf{NH}_3(\mathsf{aq}) + \mathsf{HC}\textit{I}(\mathsf{aq}) \to \mathsf{NH}_4\mathsf{C}\textit{I}(\mathsf{aq})$

Your answer

4. The equation for the reaction of aqueous phosphoric(V) acid, H₃PO₄, with aqueous sodium hydroxide, NaOH(aq) is shown below.

 $H_3PO_4(aq) + 3NaOH(aq) \rightarrow Na_3PO_4(aq) + 3H_2O(I)$

25.0 cm³ of a 0.200 mol dm⁻³ H₃PO₄(aq) is titrated with 0.600 mol dm⁻³ NaOH(aq).

Which statement is correct?

- A. The end point occurs when 25.00 cm³ of NaOH(aq) has been added.
- B. The end point occurs when 75.00 cm³ of NaOH(aq) has been added.
- C. After titration the final solution contains 0.0150 mol of Na₃PO₄.
- $\label{eq:D.D} D. \qquad \mbox{After titration the final solution contains 0.0150 mol of H_2O}.$

Your answer

Г	1	1	
-		-	

5. A student prepares a standard solution and carries out a titration. The standard solution is placed in the burette.

Which of the following would result in a titre that is larger than it should be?

- 1: Water is added to completely fill the volumetric flask, rather than to the graduation line.
- **2:** The conical flask is washed out with water before carrying out each titration.
- **3:** The pipette is washed out with water before carrying out each titration.

Α.	1,	2	and	3

- B. Only 1 and 2
- C. Only 2 and 3 D Only 1

J. Only I	
Vour opowor	
Your answer	

Ľ	1	1
L	•	

- 6. Which reagent would exactly neutralise 100 cm³ of 1.00 mol dm⁻³ H₂SO₄(aq)?
 - A. 0.100 mol Al(OH)₃
 - B. 0.100 mol NH₃
 - C. 0.100 mol Ba(OH)₂
 - D. 0.100 mol NaOH

Your answer

[1]

END OF QUESTION PAPER

Mark scheme – Acids (MCQ)

Q	uestic	on	Answer/Indicative content	Marks	Guidance
1			A	1	Examiner's Comments Candidates found this part difficult with many selecting B, the equation that looked a little different, rather than the correct answer of A (a redox equation). This suggests that many candidates are unaware of the role of ammonia as a base.
			Total	1	
2			D	1	Examiner's Comments This question differentiated well. It appeared as if many candidates did not multiply the maximum error by 2 or used the final reading as opposed to a calculated titre.
			Total	1	
3			A	1	Examiner's Comments Candidates were clearly unsure on how to classify a neutralisation reaction, with D being a common incorrect answer.
			Total	1	
4			A	1	
			Total	1	
5			D	1	
			Total	1	
6			с	1	
			Total	1	